
On the Quadratic Sieve

Using the best publicly known algorithm, it takes a modern, 2.2 GHz CPU about 1000 years
to factor a 795-bit integer of the form N “ pq, where and p and q are prime numbers.1 On
the other hand, generating such an integer takes merely a few seconds. The asymmetry of
these two problems – factoring a large integer that is the product of two primes and generat-
ing such an integer – is widely used in modern cryptography, particularly in RSA encryption
and signature schemes.

Therefore, it is worthwhile to examine the efficiency, implementation, and theory of al-
gorithms used to factor integers. This paper presents an implementation of the quadratic
sieve algorithm – the fastest known method for factoring integers with around 350 bits –
with a particular emphasis on the seiving step of the algorithm.

Motivation for the Quadratic Sieve

Suppose that for some integer a, N `a2 is a perfect square. Then it follows that N “ b2 ´a2

for some integer b. Since N “ b2 ´ a2 “ pb ` aqpb ´ aq, a non-trivial factorization of N has
been found so long as b ´ a ‰ 1. This method is known as factoring by squares.

If an oracle which returned integers a and b of this form for any N existed, then factor-
ing large integers would be trivial in terms of computational complexity. Unfortunately, no
such oracle exists, and algorithms that directly search for integers a and b of this form are
inefficient.

For this reason, it is necessary to relax the assumptions on a and b, and search for them
indirectly. More specifically, we indirectly search for values a and b such that

b2 ” a2 mod N. (1.1)

If equation (1.1) holds, then kN “ pb ` aqpb ´ aq and there is a decent chance that
d “ gcdpN, b ´ aq is a non-trivial factor of N .

1Boudot pg. 1
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Factoring Using the Quadratic Sieve

The indirect method for factoring N by finding values of a and b satisfying equation (1.1) is
known as the quadratic sieve. At at high level, the quadratic sieve can be broken down into
the following steps, each of which will be discussed at more length in its own section:

(1) Let B “ rpLpNq
1?
2 qs where Lpxq “ e

?
lnpxq lnplnpxqq.

(2) Find at least πpBq ` 1 integers taiu
n
i“0 so that ci ” a2i (mod N) factors as a product of

primes p ă B.2

(3) Take a product ci1 . . . cik so that each prime power appearing in the product is even.
Then, ci1 . . . cik “ b2 for some integer b.

(4) Compute a and b by letting a2 “ pai1 . . . aikq2 ” a2i1 . . . a
2
ik

” ci1 . . . cik “ b2 and taking
the square roots of a2 and b2 to recover a and b.

(5) Let d “ gcdpN, b ´ aq. If d ‰ N and d ‰ 1, then return d, a non-trivial factor of N .
Else, repeat step (3).

The proceeding process hints at a number of important properties of this algorithm.

Firstly, the algorithm is probabilistic. It is not guaranteed to return a correct factoriza-
tion of an integer N , although it does so with high probability since the chance of success in
step (5) is non-negligible and it can be repeated many times.

Secondly, as the functions in step (1) and (2) indicate, the runtime of this algorithm is

somewhat complicated. The general quadratic sieve algorithm is Opep1`ϵq
?

lnpNq ln lnpNq
q for

some positive ϵ where N is the integer being factored. Thus, the runtime is sub-exponential
but super-polynomial in the bit length of an integer N . Therefore, the algorithm is a vast
improvement on the naive trial division factorization algorithm, but still impractical for ar-
bitrarily large integers.

Lastly, the computational complexity of the problem arises primarily from finding the values
ai so that ci ” a2i (mod N) factors as a product of primes p ă B in step (2). This step is
known as sieving, and, of all the preceding steps, it will be covered in the most detail due to
its technically complex nature. Other steps, such as p3q and p4q can be solved by algorithms
that are less conceptually challenging.

2Here π denotes the prime counting function.
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Choosing a bound B

At first glance, it is somewhat odd to assign to B the value rLpNq1{
?
2s. This value is an

optimization of the algorithm. Choosing it is not strictly necessary for the algorithm to run
correctly. If B is taken to be a larger value, the algorithm is more likely to return a factor of
N , but it takes longer to run. On the other hand, if a smaller value of B is taken the chance
of factoring N successfully decrease, but so does the runtime. This value of B happens to
be “just right” in the sense that it gives the algorithm a good runtime, while still ensuring
that there is a good chance that it factors N successfully.3 The code for assigning B to this
value as in step p1q is trivial.

The Seive

Recall that in step (2) we wish to find many integers ai such that ci ” a2i (mod N) factors
as a product of primes p ă B. Step (2) is fairly complicated and can be considered an
algorithm unto itself. It can be broken into a number of sub tasks:

(i) Make a list of primes p ă B for which there is a solution to t2 “ N (mod p) – i.e., a
list of possible prime divisors of the potential ci generated in step (2).

(ii) Make a list of values rF pxq, F px` 1q, . . . , F px` yqs, where F is the function such that
F ptq “ t2 ´ N , x “ r

?
N s, and y “ rLpNqs.

(iii) For each value in step (ii), if it can be factored using primes from step (i) – i.e., primes
less than B which divide the value – then return the value.

The first two steps are fairly simple. Step piq can be solved by generating a list of primes
and then checking if a solution to t2 “ N (mod p) exists by seeing if N pp´1q{2 ” 1 (mod p).
This works with the exception of when p “ 2.4 In this case there is always a solution and
the case where p “ 2 is treated separately. Step (ii) is simply a direct computation.

Step (iii) is more interesting conceptually. Although a brute force algorithm certainly exists,
there are multiple solutions which are far more elegant.

Notice that if p | F ptq then it follows that p | F pt ` αpq “ pt2 ´ Nq ` 2αp ` α2p2 since
p | 2αp ` α2p2. Hence, starting from a solution t to t2 ” N (mod p), every pth value in
the list from step (ii) is divisible p. This gives a more efficient way of canceling small prime
powers: for each prime p, for each starting solution t, divide every pth value in step (ii) by
the largest pn such that pn divides the value. At the end of this process, those values which
have been reduced to 1 can be expressed as products of small prime powers5. In doing so,

3The derivation of this optimization is somewhat lengthy, and can be found in Hoffstien pgs. 151-155
4If t2 “ N then N pp´1q{2 “ tp´1 “ 1. If not, notice xpp´1q{2 “ 1 has at most pp ´ 1q{2 solutions in Z{pZ

and there are pp ´ 1q{2 quadratic residues, indicating a non residue cannot be a solution
5That is, with base primes pi ă B
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the desired ci in step (2) have been found. More specifically, the algorithm for step p2q can
be implemented in python as follows:

# step (2)

def seive(N: int, B: int) -> tuple[list[int], list[int]]:

# step (i)

primes = list(primerange(3, B))

prime_base = []

for prime in primes:

if pow(N, ((prime - 1) // 2), prime) == 1:

prime_base.append(prime)

# step (ii)

x = floor(sqrt(N) + 1)

y = ceil(exp(sqrt(log(N) * log(log(N)))))

values = []

for t in range(x, x + y):

values.append((t * t) - N)

saved_values = values.copy()

# handle the case p = 2 separately

k = values[0] % 2

for i in range(k, len(values), 2):

while values[i] % 2 == 0:

values[i] = values[i] // 2

# step (iii)

for p in prime_base:

roots = mod_sqrt(N, p)

for root in roots:

for i in range((root - x) % p, len(values), p):

while values[i] % p == 0:

values[i] = values[i] // p

c_i_list = []

for i in range(0, len(values)):

if values[i] == 1:

c_i_list.append(saved_values[i])

return c_i_list

Where mod sqrt is implemented using the Tonelli-Shanks algorithm, and the starting so-
lution’s index is set to (root - x) % p in step (iii) since the first element of the val-
ues list is F pxq. The x’s can be thought of as “canceling” mod p leaving the index of
F px ` root ´ x%pq “ F proot%pq as needed.
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The runtime for the sieving step compared to a lightweight Op
?
Nq algorithm6 is graphed

below

giving a good heuristic for the superior runtime of the sieve in comparison to the Op
?
Nq

runtime of trial division factoring.

Computing a and b

In step (3) we aim transform the list ci we obtained in step (2) into many a and b such that
b2 ” a2 (mod N).

Since each ci is the product of small primes p ă B, it is fairly efficient to find a prime
factorization of each of these ci and record a vector vi “ pl1, . . . , lnq P Fm

2 where lt is the
power modulo 2 of the tth prime in the prime base obtained from step (2).7 Then, the
product ci1 . . . cik has an even prime power for every prime if and only if

k
ÿ

j“1

vij “ 0 P Fm
2 .

Finding sums of this form is the same problem as solving a system of m equations with n
variables.8 Gaussian reduction and other well known algorithms are well suited for this task.
Steps p4q and p5q can then be easily completed using the modular square root algorithm
from before and computing a greatest common divisor.

6The algorithm simply counts to Op
?
Nq

7If a time for space trade off is desirable, it is possible to do this in step p2q part (iii) with very little
overhead by counting the number of times values[i] is divided by p

8Which is why πpBq ` 1 elements ci are desired, so that there are more variables than equations
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